Neuroscientists Just Launched an Atlas of the Developing Human Brain

Your brain is one enigmatic hunk of meat—a wildly complex web of neurons numbering in the tens of billions. But years ago, when you were in the womb, it began as little more than a scattering of undifferentiated stem cells. A series of genetic signals transformed those blank slates into the wrinkly, three-pound mass between your ears. Scientists think the way your brain looks and functions can be traced back to those first molecular marching orders—but precisely when and where these genetic signals occur has been difficult to pin down.

Today, things are looking a little less mysterious. A team of researchers led by neuroscientists at UC San Francisco has spent the last five years compiling the first entries in what they hope will become an extensive atlas of gene expression in the developing human brain. The researchers describe the project in the latest issue of Science, and, with the help of researchers at UC Santa Cruz, they’ve made an interactive version of the atlas freely available online.

“The point of creating an atlas like this is to understand how we make a human brain,” says study coauthor Aparna Bhaduri. To do that, she and her colleagues analyzed not only how gene expression varies from cell to cell, but where and at what stages of brain development those genes come into play.

Crucially, the researchers performed that analysis at the level of individual brain cells—a degree of specificity neuroscientists have struggled to achieve in the past. That’s huge, in part because it gives researchers their clearest picture yet of where and in which cells certain genes are expressed in the fetal brain. But it also means scientists can begin to characterize early brain cells not according to things like their shape and location (two variables that neuroscientists have long used to classify cellular types and subtypes), but by the bits of DNA they turn on and off. As developmental neurobiologist Ed Lein, who was unaffiliated with the study, says: “This is not the first study in this area by any means, but the single cell technique is a game changer.”

look what i found
love it
lowest price
made a post
made my day
more about the author
more bonuses
more help
more helpful hints
more hints
more info
more info here
more information
more tips here
moved here
my company
my explanation
my latest blog post
my response
my review here
my sources
navigate here
navigate to these guys
navigate to this site
navigate to this web-site
navigate to this website
next page
no titleofficial site
official source
official statement
official website
on bing
on front page
on the main page
on yahoo
one-time offer
original site
our site
our website
over at this website
over here
pop over here
pop over to these guys
pop over to this site
pop over to this web-site
pop over to this website
published here
read full article
read full report
read here
read more
read more here
read moreÂ…
read review
read the article
read the full info here
read this
read this article
read this post here
read what he said
recommended reading
recommended site
recommended you read
redirected here
related site
right here
secret info
see here
see here now
see it here
see page
see post
see this
see this here
see this page
see this site
see this website

Lein would know. An investigator at the Allen Institute for Brain Science (a key institutional player in the mission to map the human brain, and the home of several ambitious brain atlas projects from the past decade), he and his colleagues performed a similar survey of gene expression in developing human brains in 2014. To build it, they sliced fetal brain tissue into tiny pieces and scanned them for gene expression. But even after dissecting them as finely as possible, Lein says the cell populations of the resulting brain bits were still extremely diverse. Even a microscopic speck of gray matter contains a menagerie of functionally distinct cells, from astrocytes to neurons to microglia (though, to be perfectly frank, neuroscientists aren’t even sure how many cell types exist).

“When we measured the genes in our samples,” says Lein, “what we actually saw was the average output of all the cells in that sample.” When they were through, Lein and his colleagues had mapped the location and activity of some 20,000 genes in anatomical regions throughout the brain. But they still didn’t know which individual cells those genes came from.

Leave a Reply

Your email address will not be published.